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Abstract

By using more realistic a priori knowledge about the target motion, tracking of ma-

neuvering targets for homing missiles is enhanced. Since certain targets are assumed

to execute evasive maneuvers orthogonal to their velocity vector, a new stochastic

dynamic target model is proposed where this orthogonality is embedded. Along with

this new acceleration dynamic model, the orthogonality is also enforced by the ad-

dition of a fictitious auxiliary measurement. The target states are estimated by the

modified gain extended Kalman filter(MGEKF), and the angular target maneuver

rate is constructed on-line. A guidance law that minimizes a quadratic performance

index subject to the assumed stochastic engagement dynamics that includes state

dependent noise is derived. This guidance law is determined in closed form where the

gains are an explicit function of the estimated target maneuver rate as well as time

to go. The numerical simulation for the two-dimensional angle-only measurement

case indicates that the proposed target model with the MGEKF leads to remarkable

estimation of the target states. Furthermore, the effect on terminal miss distance

using this new guidance scheme is given.
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1. Introduction

The target tracking problem for homing missile guidance involves the estimation

of problems of estimating large and rapidly changing target accelerations. The time

history of target motion is inherently a jump process where the acceleration levels

and switching times are unknown a priori. Due to this arbitrary and unpredictable

nature of target maneuverability, target acceleration cannot easily be modeled.

A considerable number of tracking methods for maneuvering targets have been

proposed and developed for both new target models and filtering techniques[11-[7].

In spite of the numerous modeling and filtering techniques available, target accelera-

tion estimation using angle-only measurements is relatively poor. Usually, the target

tracking problem is approached by modeling target acceleration with a first-order

Gauss-Markov model and applying the extended Kalman filter(EKF). One difficulty

with the Gauss-Markov model is that the assumed large process noise spectral den-

sity induces Kalman filter divergence even when the target maneuver is not present

and can lead to a target acceleration magnitude estimate which exceeds the actual

maximum. Another problem is that the target motion is not well represented by

Gauss-Markov diffusion process.

In an effort to alleviate these problems, the circular target model has been pro-

posed as a target motion model, where the phase angle is a Brownian motion pro-

cess and the acceleration magnitude can be either a random variable or a bounded

stochastic process. This target model was suggested in [41 , i,_' concepts extracted

from [9,10].

By including a priori knowledge of the target motion, improved estimates of the

target states can be obtained. This idea is included in [6,7] by using a target acceler-

ation model which employs a target mean jerk term. For conventional targets such as

winged aircraft, the longitudinal acceleration component is often negligible compared

to the lateral component in evasive maneuvers. This notion fits the circular target

model where the angular rate term is estimated to account for the actual dynamics of

the coordinated turn. This model is presented in Section 2. However, an approximate
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state expansion is required to handle the unknown angular rate in the target model.

This approximate dynamical system used for estimation is presented in Sections 3.1

and 3.2. Furthermore, in Section 3.3 the orthogonality between target velocity and

acceleration can be viewed as a kinematic constraint where compliance is inforced by

including this constraint as a pseudo-measurement[7,8]. The approximate target dy-

namics and pseudomeasurement are included in the modified gain extended Kalman

filter(MGEKF)[11] and is presented in Section 4. The MGEKF is selected because

of its superior performance over the EKF especially for bearing-only problems. In

Section 5, a linear quadratic guidance law is derived for this circular target model.

This guidance law remains a linear function of the estimated states, but the guidance

gains obtained in closed form are a nonlinear function of the estimated rotation rate

and time to go. Finally, a numerical simulation is performed for a two-dimensional

homing missile intercept problem. Both the estimation process and the terminal miss

are enhanced by the new models and the associated estimator and guidance law.

2. Target Acceleration Model

In this section the circular target acceleration model is presented, and the dynamic

consistency between this target model and an assumed nonlinear target model is

discussed.

2.1. Circular Target Motion

The two-dimensional homing missile guidance scenario is described by two sets of

nonlinear dynamic equations of motion for the missile and target

iM = VMCOSOM , iT = VTCOSOT
M = VMSinOM , IT = VTSinOT

VM = aM, , Vr = 0 ()

bm = aM.IV, , iT = aTlVT

where (XM, XT) and (YM , YT) are inertial coordinates, Vhf and VT are the velocities, 0
aM1 , am, and aT are the accelerations, and 0M and OT are the flight path angles

[Fig. 2]. The subscripts M and T denote the missile and target, respectively, and

aM, and aM. are tangential and normal accelerations, respectively. Only the normal
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component of the acceleration contributes to changing angular orientations of each

vehicle, and the target is assumed to fly at constant speed.

The following target model is assumed to be used in the filter. The objective is

to choose a model that is linear in order to reduce the numerical computation of the

filter, but reasonably consistent with the nonlinear model so that the estimates are

of good quality. The target model for the filter in two dimensions is

aT8(t) = aTcoS(Wt + 0), GTV(i) = aTsin(wt + 0) (2)

where aT is a constant which is unknown a priori, w is the angular velocity to be

estimated in a right-handed coordinate system, and 0 is a Brownian motion process

with statistics

E[dO] = 0, E[dO2] = Odt, E = l/re (3)

Here, ( is the power spectral density of the process and rg is the coherence time,

the time for the standard deviation of 0 to reach one radian. While in the previous

circular target model[4] the acceleration components were just a diffusion process

along a circle, those in the new model are related to the actual target motion through

a term of physical meaning, w.

2.2. Dynamic Consistency

In order to see how the current model approximates the assumed nonlinear target

dynamics(I), consider a deterministically equivalent case. Integration of (2) with

E = 0 and w > 0 yields

= snwt, V = t - VT + aT. (4)

where the initial conditions are V = 0 and V, = -VT. Adding the square of each

component and moving all terms to the left hand side gives

2(1 _ coswt)[( T), - VT]= 0. (5)

For this equation to hold for all t > 0

aT (6)

VT
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which is equivalent to the differential equation for angular rate in (1).

Furthermore, by taking the dot product of the velocity vector with the acceleration

vector, we obtain

VT.aT = aT[-VT + -J]3nwt =0 (7)

using (6) for all t > 0. This orthogonality between target velocity and acceleration

demonstrates the dynamic consistency of the proposed target acceleration model for

the filter with the nonlinear target dynamics.

3. New Dynamic and Measurement Models for Estimation

The previous section dealt with a new circular model for filter implementation in

order to exploit an assumed characterization of the motion of a typical target. In

this section, the stochastic dynamic equations for the new target model are derived.

Furthermore, the kinematic fictitious measurement suggested in [7,8] is also discussed.

3.1. Formulation and Approximation

It6 stochastic calculus[12] applied to the Eq.(2) results in a stochastic differential

equation with white state-dependent noise[9].

-daTs - - aT, 0-d aT.
1 dt + (8)daT, W - az, do 0 aT'

where the elements -ft in the drift coefficient are the It6 correction terms. Note

that the problem is nonlinear due to the unknown w. To avoid solving the nonlinear

problem, w is approximately removed by an expansion of state variables as in [10].

Define new states as

1 = wa, , = wa,

a way , a2 wa,... (9)

with the assumption
ai+1 (10)

ai

By augmenting the dynamics of these new states to (2), an approximate dynamical
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model which includes this new target model is truncated as

da, 2 0 0 -1 0 0 " a. -a2 -
da 2 1 0 0 0 a ,  a,
dal 0 0 -1 al -a 1

d., 1 0 al alV o 0 + a dO (11)

da -a
2 V

Note that w does not appear explicitly in (11), and (11) is a linear stochastic dif-
ferential equation. An idea of this sort, given in [10] for a scalar problem, led to

significantly improved filter performance.

3.2. Two-dimensional Intercept
The two dimensional intercept problem is developed in a relative inertial coordi-

nate system. The system dynamics are expressed in the following set of equations:

ir = U,., i, = V,
Ui, = aT., - aM,, v,. = aT,, -aM,,, (12)
aT, = aTcos(wt + 0), aT, = aTsin(wt + 0).

With the assumption of w < 1 and truncation of the target dynamics up to the

second order, the ten-element state vector is defined as

=_ y, UX u,. v, a a a 1  2 2 a T (13)

-" [ 1 X 2 X 3 X 4 X 5 X 6 X7 X 8 X9 X 10

Thus, in terms of the expanded state space, the linear, stochastic state differential

equation is described by

dx = (Fx + Bu)dt + GdO (14)

where F is given by the relations in (12) and by the coefficient matrix of x in (11)
where i = 2, B is a 10 x2 matrix of zero except for B31 = B 42 = -1, u = (aM, am,,)T,

and

C = [0 0 0 0 -X 6 X5 - X8 17 -XlO X9]T .  (15)

.3.3. Measurement
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Angle measurement

Angle information in discrete-time is assumed. Then, the measurement at time tk

is

zI(tk) = hl(X(tk)) + Vk = tan-(y,/x,) + vk (16)

where vk is a white random sequence with statistics

E[vk] = 0, E[vfvT] = V,6k,. (17)

Fictitious measurement

In Ref.[7,81 the filter performance is improved by introducing a kinematic con-

straint based on a priori knowledge, which is implemented in the form of an aug-

mented fictitious measurement. In particular, the acceleration vector is assumed to

be related to the velocity as

VT . = 0 (18)

under the assumption that the target accelerates predominantly orthogonally to its

velocity vector. When this condition is not met, the acceleration has a component in

the direction of the target velocity as

VT " 6T = 77 (19)

where VT and aT are assumed to be random vectors representirg target velocity

and acceleration, and q is the uncertainty in the orthogonality. This idea can be

implemented in the form of a discrete pseudo-measurement as

Z2(tk) = h 2 (X(tk)) + k

- VTS,. aT, ± VT,.aT,, + ?I k (20)

where 7k is a white random sequence with assumed statistics

E[7k] = O, E[7krIT] = V2k,. (21)
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Note that the variance of the measurement noise corresponds to the tightness of
the constraint. In other words, the larger the variance, the more relaxed are the

requirements on longitudinal acceleration. This fictitious measurement is used along

with the angle measurement in the modified gain extended Kalman filter described

in the next section.

4. Estimation of Target States

In this section, the modified gain extended Kalman filter(MGEKF)[11] is derived
for the circular target model and for the fictitious and angle measurement defined in
the previous section. Also, considered is the method to reconstruct the maneuver rate

using the estimated states. Given the continuous-time dynamics and discrete-time

measurements, as in the previous section, construction of the filter is completed by
specifying the time propagation and measurement update procedures.

4.1 Time Propagation

The state estimate i(t/ti._)is propagated from the current time t;_. to the next
sample time t, by integrating

*(tltj,) = FiCt/tj_j) + Bu(t),

P(t/ti-i) = FP(t/ti-,) + P(t/ti-,)FT + E[GOGTI, (22)
X(t) = FX(t) + X(t)F T  + E[GOGT].

given the posteriori estimate j (ti-1 /ti- 1 ) = i(ti-1) and posteriori pseudo-error vari-

ance P(ti_./ti.1) = P(ti- 1). The notation R(t/ti-.) denotes the value of some quan-
tity R at time t given the measurement sequence up to time t- 1. The integration of

the covariance of the state X(t) begins with X(O) at time t = 0. Upon integrating

the equations above to the next sample time, the propagated estimates are obtained

as follows:
g(ti) =i(t4/t4-1), P(ti) = P(ti/ti-i) (23)

It should be noted that since the process noise is state-dependent , the integration to

propagate P(t) also requires the integration of t(t), where E[G®GT] matrix turns
out to have nonzero elements for its lower-right 6 x 6 matrix. Note that the approxi-

mation technique reduces the originally nonlinear dynamics to linear dynamics. This
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allows for the closed form solutions of the propagation of the estimates rather than

performing on-line integration.

4.2 Measurement Update[l 1]

The states are updated as follows:

i(t=) = i(t) + K(t,)[z - h((t))],(24)

K(ti) = P(ti)H(t)T[H(ti)P(ti)HT(t.) + V - I

where 0 V2 and

ah H(t,) (25)

[ i, H 2, 0, 0, 10, . .. 0 ]0 [ , 0, H23, H24, H25, H26, 0

with
Hil =- 2-rglH 2 X,HH2 = = + V12,

H123 = =, 4 Hi6 1 i +V, 1126 = X4 + VyM

where the missile acceleration in the x and y directions, aM. and am. , are assumed

to be measured very accurately with on-board sensors.

The measurement update of the pseudo-error variance is performed by

P(ti) = [I -K(t)g(zlt), (ti))]P(ti)[I -K(ti)g(z(ti),7-(t,))]T

S+K(t,)R(ti)llqt )r  (26)

where g(z(t,), 2(t,)) is used in the update of P rather than H of Eq. (25) and is given

as

h(x(ti)) - h(;:(ti)) = ,-(ti) -'(tI)
h2(x(t,)) - h2kj-(t,))

= g(z4t),y44t))(Wt,) - i(ti)) (27)

Note that g is a 2 x 10 matrix of function explicit only in the known quantities z

and . In this sense, the function h has a universal linearization with respect to
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the measurement function z. Unfortunately, this type of linearization with respect

to the measurements occurs for only a few functions. It is applicable to angle mea-

surements[Ill, but not for our new pseudo-measurement. Therefore, we must for the
pseudo-measurement revert back to the extended Kalman filter form and define

g2(z(t,),i(ti)) =h2(-(ti)) - h&(4))

Oh2  (28)

where the expression for 9h2 I= is found in the second row of H in (25)
4Ox(t,)

For angle measurements [ill

h,(t,)) - hCiCt,)) = g(z.Ct,), t,))C(t,) - -t(t,))

= -E(ti)ft(ti)(X(t) - ,(ti)) (29)

where

E~ti) = (t,)tan-'a(t,)
a(t,)

0(t) = VzX(ti)2 + y,(t,) 2  (30)(-(xtt)2'Ct,) + Y'(4,)9'(4))
at = D(t)Ht(ti)(z(ti))W ti)

H(z(t,)) = [sin z(t,), ,-cos z(t,),0 ,0,0 ,...]

As discussed in [11], 9(z(t,),;(t)) is only used in the update of P(t,) but not in the

gain, since it was empirically shown that this procedure leads to an unbiased estimate

of the state.

4.3. Estimation of w and To

Since the target angular velocity term is embedded in the states, W should be
reconstructed using the estimated states. A simple way to determine the value of w1 a2

is to divide the states as u = .or --,. However, since the expanded state space is
a, al

originally an approximated state space, this might lead to numerical errors, especially
when the higher approximated terms are used. By relying on the definition of the
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vector relation between and velocity and acceleration, the target angular velocity

can be obtained without using the augmented states for approximation. From the

assumed dynamics the target angular velocity during its evasive maneuver is

= TI1 (31)

Thus, by using the state estimates, w is constructed as

I= sgn( VT.aT' - VT aT X VT (32)

To be used later in the controller, an estimate of time-to-go, T,,, is required, and

approximated here as
R R

IRI =X. I /-NA (33)

where R and R are the estimates of relative range and range rate, respectively, and

the vectors k and V are the estimates of relative position and velocity, respectively.

5. Linear Quadratic Guidance Law

Based on the estimated states and the estimate of the rotation rate constructed

from the estimated states, a guidance law can be mechanized. In the following, a

stochastic guidance law is determined which minimizes a quadratic performance index

subject to the stochastic engagement dynamics including the stochastic circular target

model(8) under the assumption that states including the target states and the target

rotation rate are known perfectly. This assumption simplifies the derivation of the

guidance law enormously, and for this homing problem it is shown that the solution to

the stochastic control problem with state-dependent noise can be obtained in closed

form. The solutio, 'tained does not produce a certainty equivalence controller since

the guidance law explicitely depends upon the system statistics.

Note that since the noise in each cartesian direction is correlated in the stochastic

circular target model(8), and that with at. and aT, dynamically coupled through w
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term, the guidance commaands in the x and y direction cannot be achieved indepen-

dently. Thus, the optimal stochastic controller for circular target model is based on

the minimization of the performance index

J = El [2 + C f[a2 a21,]dt} (34)

subject to the following stochastic system of linear dynamic equations

dx = udt
dy = vdt
du = (aT - aM.)dt (35)
dv = (aT ,- am3 )dt
daT. = (-3aT.-waT,)dt - aTdO
daT, = (---a7- waT)dt + aTdO

where 0 is a Brownian motion defined earlier and E[.] stands for an expectation

operator. In the construction of filter, the inherent nonlinearity of the target model

was removed by an expansion of state variables. However, for the guidance law

formulation, the rotation rate, w, is assumed known, although it must be constructed

on-line from the state estimator(32).

For brevity of notation, define the state and control vectors as follows:

X -- [iy,u,v, aT.,aTIT

U [aM.,aM, T  (36)

Then, the stochastic control problem is to find u which minimizes
1 T-

J = E{ljo u T Rud + 1zff (37)

subject to the stochastic differential equation with state dependent noise

do = [Ax + Buldt + D(z)dO (38)
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where
0 0 1 0 0 0 "0 0
0001 0 0 ,00
0 0 0 0 1 0 1 0(
0 0 0 0 0 1 0 1
0g000 e -W 00

040 0 0 
0 100000

0[ o1 0 000
0 0 1 ] 0 00

-06 0 0

S j 0 

where c > 0. Note that
6

D(m)= X D, Di E R"' (40)
j=1

where mi is the jth element of z and where

0 0 0
0 0 0
0 0 0

DI, D2, D3 ,D 4 = 0 )Ds= 0 ,D 6 = 0 (41)
0 0 -1

L0 JL1 J L0J

To obtain an optimal control for this class of problem, dynamic programming[13,14]

is employed where the Hamilton-Jacobi-Bellman equation becomes

0= Jg*(x, t) + Min{JZ(Am + Bu) + [TA(jz, t)z + uTRu)} (42)
U

where j is the optimal return function and the subscripts denote partial derivatives.

The elements of the matrix A for any symmetric matrix W is defined as

Aij(Wt) = tr[Dj(t)TWDj(t)] (43)

The minimization operator in (25) produces

s = i-R-lBJ (44)
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By substituting (44) into (42), the dynamic programming equation becomes

0= Jg' + JjA- JOBR-1BJ + jTA(Jjz, ,t)X (45)

The optimization problem is solved by explicitely showing that the equation above

has a solution. Asume JO(z, t) = zrS(t)x, then

T"jo' T j = (46)J = jXSo, Jo* X (46) z=

With this assumption, the dynamic programming equation is satisfied for all mE R'

if

+ SA + AT S+A - SBR-'BTS = 0, S(t) = S! (47)

The desired optimal controller becomes

u = -R-BTSz (48)

where S is the solution of the Riccati equation and the A(S, t), = tr(DTSDi leads

to

A= elements S6 -$56 (49)

The fact that A has only nonzero elements for its lower-right 2 x 2 matrix allows

a tractable closed-form solution. To see the characteristics of the solution in a simple

manner, matrices are partition such that their lower-right block partitioned is a 2 x 2

matrix. Then

A= 0 A22 
1 B- 0' ST2 S22  [0

where S is defined in (49). This leads to the controller of (48)

aM ]1 [BTSI,] (51)

14
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where the block matrices satisfies the decomposed ficcati equation

-,ij = S',A 11 + ATS11 - S,,BIR-'BTS,
-,S12 = SlIA 12 + S12Ar2 + ATS1 2 - SBR-'BT S,2  (52)

-§22 = S12A12 + S22A22 + AT S2 2 + A + S S12B1R-1BT S12

Since the 522 block does not affect the block matrices S11 and S12, the optimal control

law is not dependent on 522. Therefore, the closed form optimal guidance law for

this special class of problem can be obtained by integrating the Riccati equation

backwards without requiring the explicit evaluation of the A term. In particular, the

stochastic optimal control problem essentially degenerates to a deterministic optimal

control problem although the It6 terms are retained. The solution process for this

deterministic control problem, explained in detail in the Appendix A, produces a

guidance law in closed form. Note that the deterministic coefficient A22 includes the

statistic E. Therefore, the resulting controller is not a certainty equivalence controller.

The new controller becomes

X(t)
y(t)

aM. 1 [C1 0 C2  0 C3 C4  u(t) (53)
aM, 0 C1 0 C2 -C 4 C3  V(t)

aT.(t)

aT,(t)

where the gains cl to c4 are an explicit function of T,,, w, and 0 as

- Tgo :3C1 -- ' C 2 -

E) Tgo, er 0 -C32- sinwT., (2 + .2) (coswT,,o - e9T. (92_ U2) (4

3 -°T______ T 482 _ w2 )

C4 C {-wToTgTo + (e TO'  cosw, t+O ) ( sifwTgo ( W2)

where c* =T0
e'Tg(C + T3 )( - 2- 2)
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Fig. 1 is a block diagram for an adaptive guidance scheme for a homing missile.

Note that guidance gains are functions of Tgo, estimated time to go, the statistic E) and

the estimated maneuver rate c,. Therefore, for the bearing-only measurement system

although the resulting stochastic guidance law is sub-optimal since the measurements

are nonlinear functions of the states, the explicit dependence on the estimate of the

target maneuver rate is a new feature which should help reduce terminal miss distance.

6. Numerical Simulation

For a particular engagement scenario, the performance of the estimator using the

new target models and that of the guidance law are evaluated.

6.1. Missile and Target model

Both target and missile are treated as point masses and are considered in two-

dimensional reference frames as shown in Fig. 2. The missile represents a highly

maneuverable, short range air-to-air missile with a maximum normal acceleration of

lOOg's. It is launched with a velocity M = 0.9 at a 10, O00ft altitude with zero

normal acceleration. After a 0.4 sec delay to clear the launch rail, it flies by the

guidance command provided by the linear quadratic guidance law of Section 5. Also,

to compensate for the aerodynamic drag and propulsion, the missile is modeled to have

a known longitudinal acceleration profile : am = 25g's for t < 2.6sec, aM = -15g's

for t > 2.6sec. The target model flies at a constant speed of M = 0.9, and at an

altitude of 10, 000ft. It accelerates at 9 9's either at the beginning or in the middle

of the engagement.

The actual states are first used in the guidance law to produce consistency in

evaluating the performance of the filter. In evaluating the actual miss distances, the

filter state estimates are used in the guidance law. Two engagements, considered in

the following section, are shown in Fig. 3. With R and Rm denoting initial range and

maneuver onset range, respectively, engagement 1 is the situation where the target

maneuver starts at the beginning, and for engagement 2 the maneuver starts in the

middle.
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6.2. Filter Parameters and Initial conditions

Integration of actual trajectories is performed by a fourth-order Runge-Kutta

integrator with step size 0.02 seconds. The variance for the angle measurement is

chosen, as given in [4], to be
0.25

V = a V, Vo =0.2 + 5.625 * 10-7 )/At rad2  (55)

where R is range, At is filter sample time;-and a is parameter which is used in the

simulation indicating different levels of sensor accuracy.

As mentioned earlier, the variance for the pseudo-measurement can be interpreted

to show how strictly the orthogonality assumption between the target velocity and

acceleration is to be kept. By allowing some acceleration in the longitudinal direction,

a reasonable estimate of the variance to be used can be given. Suppose that the

acceleration component in the velocity direction has a normal distribution with zero

mean. Then with probability 0.95, a 1 g acceleration while flying with VT = 970ft/sec

leads to 2 a = 3.12 * 104 [ft2/sec3], where a is the standard deviation, which results

in a variance V2 = 2.44 * 108 [ft2/sec3] 2.

Unless otherwise stated the filter is initialized at launch with the true relative

position and relative velocity component values. Hence, the initial values for the

diagonal elements of the covariance matrix associated with position and velocity,

P11 , P2, P3, and P44 are set to ten. On the other hand, little knowledge about

target acceleration is assumed to be provided at the beginning. Therefore, the initial

values for the target acceleration and expanded states are zero. Initial values of the

covariance matrix associated with target acceleration is calculated by resorting to

the definition of the target acceleration at t = 0 given in (2). Those covariances

are produced in the Appendix B. The target is expected to execute a maximum

acceleration turn in its evasive motion, and the missile has no knowledge about the

direction of target rotation. Note that 0 is a Brownian motion process beginning at

0(0) = 0, the expected angle the target acceleration vector makes with respect to the

x, axis at the time of launch, and aT.,.. is the expected maximum acceleration of
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target. For the simulation with a coordinate system having one axis perpendicular to

the initial VT direction, j is zero. Then, the possible nonzero elements of the upper

triangular part of the initial covariance matrix are Ps5 (O), PsT(O), P59 (0), P7r(0),

P79(0), and P99 (0). Furthermore, no information is available about the direction of

maneuver, and the possible maximum rotation rate can be either positive or negative.

Thus, the odd powers of C are taken as zerO. This leaves only Pss(O), P59(0), P77 (0),

P99(0) as the nonzero elements. However, a-value of ten is assigned to P6, PW, and

P10 10 to ensure positive definiteness of the covariance matrix at the initial time.

6.4. Filter Results

The results in this section are the product of a Monte Carlo analysis consisting of

ten filter runs. Along with the miss distance calculations, the plots of the estimation

error and the w estimates versus time are mainly considered. The errors are calculated

as [E[e.] 2 + E[e,]211/ 2 where E[e,.] and E[e.] are the averaged values of errors over

ten simulation runs.

Figs. 4-5 represents the results for the engagement 1 where the target maneuver

initiates at t = 0 and the pseudo-measurement is not used. As seen in Fig. 4, when

there is no switching of the direction of the target acceleration during the maneuver,

the estimation results get better as the power spectral density of the process noise

decreases. When E is relatively large, the target acceleration estimation is poor, and

divergence of the position and velocity estimation occurs. This causes the estimate

of w to deteriorate as time goes on. However, with small (, the filter performance

improves considerably. As shown in Fig. 5, estimation improves with better angle

measurements.

When the auxiliary pseudo-measurement is also implemented in the filter, estima-

tion performance improves over the case when only an angle measurement is used.

This is shown in Fig. 6 where again the target starts its acceleration maneuver at

the beginning of the engagement(R, = RM). At first, the filter with the fictitious

measurement seems to work a little worse than the filter with angle-only measure-

ment. Then, the fictitious measurement promptly works as if it suppressed or delayed

18



the filter divergence. Note that the effect of two values of pseudo-noise variance are

shown.

The role of the fictious measurement is more observable for engagement 2 where

the target maneuver begins in the middle of the angagement(Rm = 4000ft). As

plotted in Fig. 7, the filter equipped with only the angle measurement diverges as

soon as the target maneuver occurs. On the other hand, when the filter is augmented

with the fictitious measurement, it works very effectively. The divergence of position

and velocity is noticeably suppressed, and the acceleration estimate tend to return to

its actual value from an instantaneous large acceleration error. With the accuracy of

the angle measurement increased, the target acceleration estimate after the maneuver

onset improves faster than the filter that uses poor angle measurements. This is

shown in Fig. 8. However, after the target started to maneuver in the middle of

the engagement, position and velocity error estimates do not reduce as V becomes

smaller.

Miss distances have been calculated on the basis of 50 runs of Monte Carlo sim-

ulations with an approximate error ±0.02 ft due to subdiscretization near the final

time. In the Table 1, the actual states are fed to the guidance law in the Case I,

and the estimated states and maneuver rate estimate are fed to the guidance law in

the Case 1I and III. The estimates are obtained from angle-only measurements in the

Case II, and from both angle and pseudo-measurement in the Case III. Miss distance

performance is tested as more noise is introduced into the measurement and then

into the dynamics. For the particular scenario chosen here, miss distance has been

improved by using the angle and pseudo-measurement, especially as the process noise

power spectral density E in the state dependent noise term decreases.

7. Conclusions

The orthogonality between the target acceleration and velocity vectors is a typical

characteristic of the target of an air-to-air missile, and it is utilized in the develop-

ment of a new stochastic target acceleration model for the homing missile problem.
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In addition, this characteristic is also implemented in the form of an augmented
pseudo-measurement. A guidance law that minimizes a quadratic performance index
subject to the stochastic engagement dynamics is determined in closed form where
the gains are an explicit function of the estimated target maneuver rate and time to
go. Preliminary results for the two-dimensional case indicates that the circular target
model is able to produce a reliable estimate in the homing missile engagement. When
it is augmented by the fictitious measurement, the modified gain extended Kalman
fiter using the proposed target model results in the remarkable enhancement of tar-
get state estimation for both a maneuvering and nonmaneuvering situation. This is
because the circular target model inherently includes a better approximation to the
simulation dynamics of target motion, and the pseudo-measurement imposes satisfac-
tion of the orthogonality characteristic through the measurement process. However,
the improvement in miss distance for a particular engagement shows significant im-
provement in going from angle-only measurement to both angle measurement and
pseudo-measurement when the process uncertainty decreases.
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Appendix A

2. Linear Quadratic guidance law for deterministic circular target model

In the following, the optimal deterministic guidance law for linear quadratic prob-

lem is sought for the current circular target model filter. The deterministic optimal

solution can be obtained by solving the Riccati equation without the A term via

transition matrix approach, but the use of Euler-Lagrange equation seems simpler for

this case.

The problem is to minimize the performance index

1 2 C t
2 +

J = [X+ y + M.+ aYdt (A-1)

subject to the following linear dynamic system

U

i = aT, - aM,
(A-2)

v = aT .-ap4

aT, -- -- W -ta;

aTv = -- 7jaT. + waT.

This linear system of dynamics stems from taking Ito derivative of the corre-

sponding nonlinear stochastic target model (6). The w is the angular rate of target
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maneuver which is handled as a known constant in the derivations. In the actupl

mechanization of guidance command the value of c constructed from the estimated

states are used.

The variational Hamiltr-ian and the augmented end-point function are given by

H ca, + =a, + ,-+ +2A + + A3(aT. -am.)
e e(A-3)

+1\4aT.- aj +A5(.:y- waT;) + A6 (--j- + waTt)

12 +y) (A-4)

where Ai , i = 1, .. ,6 is a Lagrange multiplier. The Euler-Lagrange equations for Aj

are

A1 =0, A2 =0, -A3 = \1 , - 4 = A2  (A-5)

where the optimal control satisfies the optimality condition

A3  A4aM=---, GM,'-- (A-6)
C C

Finally, the Euler-Lagrange equations with the natural boundary conditions yield

A, = xf, A2 = yf, A3 = ZXTgo, A4 = Yf Tgo (A-7)

which gives the cont-ol

aM = x(tf)Tgo/c, am, = y(tf)To/c (A-8)

where T, is the time-to-go of missile to intercept the target and c is the guidance law

design parameter. In order to get the guidance law in terms of the current states, the

underlining dynamics is integrated backward from t1 to t. Succcsive integrations of

state differential equations yield

aT = wcoswTgoeTaT,(ty) + wsinwToeTT9*aT,(t )

aT, = -sinwTgoe"T9'aT.(tf) +weoswTg.e"T,*aT,(tj)
1 2

u = FCTgox(tf) +u(t)
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+9 + [W ( coswTeVTo) - wsinwTgoeT9QoaT.(tf)
.+w 2 2

[-w(1- coswT,.eo ) - -sinwT ° ()
T+w2

V = T.~f ~f

+ go .)+
~72 [.w(( - coswTo 2TU@ -wsinwT9oe'T~O)aT (tf)= O .(1- -a2

[ ( -- oT,uTjo#) --. ,€.T o ]d,(
w 2T (A-9)

__ _ _ W~
2  1 - o w oe T ) +sn T e Tg la - '

+ e [ --siowTgoe ° -T)]a , (t)
-+ + w 2  CAw2

X = 1-- 1 )X(tf) T0 ~ 16c9,tf

go f2 cosw, e oW

(1 -+ " -( senwT oe2 T JaT( (t )

w2 o. 02)2 PT9., + (1 coswToe- r9) + f+ inw
(tw 2 _ + +W2  2 2oT 9 a,(f

+_ __W

The final states being expressed in terms of the current states via 6 x 6 matrix

inversion,the optimal guidance law is obtained as equation (53). As expected from dy-

namnic coupling in the target acceleration model, guidance commands in ach channel

are the function of acceleration components in both x and y directions.

Appendix B

1. State and Error variance associated with target acceleration

Since the initial values for the state estimates ascociated with target acceleration

are set to zero, the state and error variances are computed with the aid of expected
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values of trigonometric functions such as

E[cos2 O = os' Op(O)dO with p(O)= e- (B-i)

By using standard manipulation, the expected value of the cos2 0 is

E[COS 2 0] = [1 + co8 2ge 2e1 ], (B-2)

and in the same manner

E[sin 2 0] = ![1 + cos2e-2etl2 (B-3)
I 2e l

E[cos 0 sin 0] = sin26e

This yeilds the initial conditions for the state and error variances associated with

target acceleration as follows.

PSS(O) = X 55 (0) = 4a (1 +cos2j)/2,
Ps(o) = X 5 6 (0) = t4_sin20/2,
P5,(O) = XST(O) = 4...(1 + cos20)12,
Pss(O) = Xss(O) = 4,..sin20/2,
p 59 (O) = X 59 (0) = 4a.2(1 + cos20)/2,
Pso(O) = X 51o(O) = a,. 2sin2O/2 ,
P6(0) = X6(0) = 4.(1 - cos20)/2,
P6(O) = X 67 (O) = a 2a sin20/2,
P68 (0) = X6(0) = a . (1 - cos20)/2,
P69(0) = X69(0) = a2..D2sin2/2, -

P 61 o(O) = X61 (O) = a . I 2(1 - co.s20)/ 2 , (B-4)
P77(0) = X 77 (0) = a2..D2(1 + cos20)/2,
P8(0) = X78 (O) = a,..(D2sin2/2,
P (0) = X7 (0) = a o3(1 + cos20)/ 2 ,

P7 o(O) - X71o(O) = a 2 .. w 3sin20/2,

Pas(0) = X8(0) = a.. 02(1 - cos20)/2,
P8 9 (0)= X89(O) = a 2 JC 3sin2 0 /2,
P81o(O) = X81 (O) = a2 oD3 (1 - cos20)/2,
P9 9(0) = X9(0) = a, 2 ,'(1 + cos2O)/2,
P91o(O) = Xg9 (O) = a2..C4sin20/2,
Po0 1 (O) = X,01 (O) = ama '4(1 - cos20)/2,
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Table 1

Statistic Case Range (ft) RangeM (ft) Miss Distance(ft)
e= 0.01 I 6000 6000 0.35
V= Vo x 10- 2  6000 - 4000 0.32
V2 = 106 II 6000 6000 1.30

6000 4000 0.74
IIl 6000 6000 0.82

6000 4000 0.54
e = 0.001 II 6000 6000 2.65
V = Vo 6000 4000 1.71
V2 = 106 I 6000 6000 2.13

6000 4000 1.36
e = 0.01 II 6000 6000 4.59
V1 = Vo 6000 4000 1.97
V2 = 106 III 6000 6000 4.29

6000 4000 1.82
e = 0.1 II 6000 6000 4.98
V = Vo 6000 4000 2.07
V2 = 106 Il 6000 6000 4.86

6000 4000 2.01
E= 0.001 II 6000 6000 2.65
V = Vo 6000 4000 1.71
V2 = 108 III 6000 6000 2.34

6000 4000 1.49
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